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SUMMARY 
The numerical solution of a single first-order conservation equation by a least-squares finite element method 
is considered. Isoparametric bilinear quadrilateral elements are used. The accuracy is studied numerically 
and it is shown that the discrete equations associated with nodal points on the boundaries should be 
modified in order to obtain an accurate numerical solution. 
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1. INTRODUCTION 

We consider the equation 

auo avo -+--=A ax, ax, 
where u, v and f are given functions. We apply least-squares finite elements for the numerical 
solution of (1) .  It is well known that numerical methods for ( 1 )  often lead to linear systems which 
are difficult to solve numerically. In the least-squares approach (1) is embedded in a second-order 
equation. In the discrete approximation of this equation linear systems occur with symmetrical 
and positive definite matrices and those systems are solved more easily. This is the main reason 
for investigating the least-squares approach. 

The least-squares method has been applied for the numerical solution of the steady-state Euler 
equations.'32 For these equations related embedding methods have been in~es t iga t ed .~ ,~  We have 
applied the method of Bruneau et al.' to obtain numerical solutions of the subcritical steady-state 
shallow water equations. However, we have encountered some severe problems, which most 
likely are caused by an inaccurate treatment of boundaries. None of the above authors refers to 
the question of the accuracy of the least-squares method. The steady-state shallow water 
equations are of the composite type (both real and complex characteristics occur) and we 
attribute the above mentioned inaccuracies to the occurrence of a real characteristic. We therefore 
propose to study the hyperbolic model problem (1).  

Equation (1) has been studied previously by Chattot et aL5 The authors apply the least-squares 
approach and compare finite element and finite difference methods for the associated second- 
order equation. We study the finite element method more thoroughly and shall show that this 
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method is 0 (h) accurate owing to inaccuracy of the numerical approximation along characteristic 
boundaries. We propose a modified boundary scheme leading to more accurate results. 

In Section 2 we give a brief account of the least squares finite-element method. We apply the so 
called product approximation or group formulation. This means that terms like uw are approxi- 
mated by Z ( U O ) , $ ~ .  For us, the main reason is that the product approximation leads to efficient 
 code^.^,^ Chattot et d5  have shown that the product approximation is vital for obtaining 
conservative schemes. For more details and further references the reader may consult Fletcher.6 
In Section3 we present some numerical results that illustrate the O(h) accuracy of the finite 
elements. In Section 3 we also investigate the truncation error of the scheme along characteristic 
boundaries and present a method for correcting the truncation error. This method clearly 
illustrates the cause of the O(h) accuracy of the original scheme. Finally in Section 4 we present a 
method in which the boundary scheme is based on characteristic co-ordinates. Numerical 
experiments show that this new boundary scheme is promising. 

2. THE LEAST-SQUARES APPROACH 

We study (1) on Szc R2. We define 

Let w be a minimum of I and let z be an arbitrary test function, then we have 

or 

Equation ( 3 )  is approximated in the finite-dimensional subspace 
bilinear quadrilateral elements $i. As has been mentioned in Section 1, we adopt the product 
approximation and find 

(3) 

spanned by isoparametric 

where 

For the computation of the integrals in ( 5 )  we apply a Newton-Cotes integration formula. 
Let n =(nl ,  n 2 )  denote the normal on aR. Integration by parts in (3) leads to 

We conclude that equation (3) is the Galerkin equation associated with the second-order 
equation 
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with boundary conditions that are either essential (t=O) or state that (1) should be satisfied on 
part of the boundary. At the end of this section we discuss the boundary conditions in more detail. 

On a Cartesian grid (4) leads to a nine-point approximation of (7). This nine-point approxi- 
mation is well known and appropriate for elliptic equations. However (7) is a parabolic equation 
with characteristic eigenvalue 1 = u/u. Or, using modern terminology, (7) is hyperbolic, because 
written as a system of two first-order equations we find a single eigenvalue A=u/u with 
multiplicity two (both algebraically and geometrically). We remark that (7) is parabolic in a 
special way. As an example we choose u = u = 1 and f = 0. We introduce the canonical co-ordinates 
(=x1-x2, y=x,+x2 and (7) becomes 

This means that (7) is not of the ‘heat conduction type’, because no first-order derivatives in 5 
occur. 

In the case of (1) we have three possible types of boundary, namely inflow, outflow and 
characteristic. Only at inflow may one prescribe w. Thus the only available essential boundary 
condition is at inflow. In the case of (7) we have the same possible types of boundary. However, 
both at inflow and outflow one should give a boundary condition. From (6) it follows that the 
least-squares approach automatically generates a natural boundary condition (or Neumann 
condition) at outflow. This condition states that (1) should be satisfied on the outflow boundary. 

3. NUMERICAL RESULTS AND TRUNCATION ERROR ANALYSIS 

We consider a test problem on R =  (0, 1) x (0, l ) ,  i.e. 

u=(a+ l)exz, a=O, 1, 
v=-x 2 ex= > f = O ,  
w=x;ex*-x2. 1 

We use a Cartesian equidistant grid. The nodal points have indices i and j ,  where i, j = 0, 
We choose n = 4 ,  8, 16, 32. The numerical solution is denoted by 0. We set 

e,(n)= max 10. 1 , J  .-0. 1 9 1 ’  . I  
i , j = O ,  . . . , n 

1 

We generically denote these norms by e . ,  = GO, 2. We define 

P 2 n = 2 1 0 g  r ( n n ) ) ,  e.(2n) n = 4 ,  8 ,  16, . =a1,2.  

In the case of (9) we have two inflow, one outflow and one characteristic boundary. At inflow 
we prescribe w. In Table I we present the computed values of e.  (4) and p z n .  From this table we see 
that for a= 1 the finite element method is only O(h) accurate in the maximum norm. If we 
compare the cases a =O and a = 1, we see a completely different behaviour of the error. Inspection 
of (9) shows that this difference is possibly associated with the properties near the characteristic 
boundary. 
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Table I. Values of e. (4) and p2" for (9) 

0.78e - 2 e. (4) O.lSe-2 0-44e -. 3 0.26e - 1 
P8 2.0 2-0 1 .o 1.4 
P16 2.0 1.9 1 .o 1.4 
P 3 2  2.0 2.0 1 .o 1.4 

5 

Figure 1. Molecule on boundary 

The molecule near the characteristic boundary is represented in Figure 1. Equation (4) in the 
boundary point 2 reads 

1 
uz(u1w1 -2u2 w2 + u3w3)--u2(u1w1 - 0 3  0 3  + 0Sw6 - 0 4 0 4 )  

h2 
2hl 4 

-~ 

1 1 
4 = - - h  2 2 ( f 3  --fl) -? hl u2 ( f 2  +f5 ) *  (13) 

Let w be a smooth solution of (1) (or (7)), let u2 = O  (characteristic boundary) and let h, =O(h, ) ,  
then the truncation error e(w) of (13) reads 

1 a3uw 
e ( o )  = - - h, u ~ + O(h:). 

4 a x l a x :  

In the case of (9) we have e(w)= O(h:) for a = O  and e(w)= O(h,) for a= 1, which motivates a closer 
look. 

For solutions of (1) it is possible to correct the truncation error on the molecule of Figure 1. We 
have to remark that this is not possible for general solutions of (7). However, we are only 
interested in those solutions of (7) which are a solution of (1) as well. From (1) it follows that 

and a discrete version of the right-hand side may be used to correct the truncation error. We add 
to (13) two extra terms, al and a, (l=left, r=right-hand side), given by 

1 h2 

4h1  
a[ =--u2(u1w1 -2u2w2 + u3w3 -u4cu4 + 2u,w, - u p , ) ,  
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Table 11. Corrected truncation error for (9) 
with a= 1 

e. (4) 0.81e-2 0.28e - 2 
PS 1.9 1.9 
P I 6  1.9 2.0 
P 3 2  2.0 2.0 

96 1 

, , J call this scheme the ‘corrected truncation error’ boundary scheme. In Table I1 we present the 
computed values of e.(4) and p z n  for (9) with c1= 1.  

If we compare Tables I and 11, we see that the boundary correction improves the behaviour of 
the error considerably and we conclude that it is indeed the boundary treatment which triggers 
inaccuracies in the original scheme (4). The ‘corrected truncation error’ boundary scheme is not 
easily applied in more difficult situations, and in the next section we consider a different and more 
general approach. 

4. A BOUNDARY SCHEME BASED ON CHARACTERISTIC CO-ORDINATES 

In Section 3 it has been found that the original scheme (4) is inaccurate owing to its treatment of 
characteristic boundaries. In this section we investigate a new boundary scheme based on 
characteristic co-ordinates. It is not very difficult to implement this boundary scheme in a finite 
element code. The resulting linear system fails to be symmetrical. We therefore discuss the 
iterative solution of this system as well. 

Let r be the characteristic boundary with parametric representation (xl ( t ) ,  x2(t)), where 

The characteristic form of (7) along reads 

-- -+ (u , ,+ux2)o - f  dt dt 

Let s denote the arc length along r. We have 

The Galerkin approach applied to (1 7) gives 

where z = z(s) is a test function. For the derivation of (19) we note that we have either an essential 
or a natural boundary condition (see Section 2). The original basis functions 4i introduced in 
Section 2 are suitable for the discrete representation of (19), because r is a part of 80. We obtain 
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For the computation of aij ,  bij and cij we apply a Newton-Cotes integration formula. We recall 
that both q andfare  given functions. Furthermore, for the computation of bij we use 

We remark that for the test problem, already considered in Table 11, the characteristic 
boundary scheme gives (on the level of the chosen presentation in this table) the same results as 
the ‘corrected truncation error’ boundary scheme. We also consider a more difficult test problem. 
We define 

r(xl)=p(exl - l), 
ci p=-- 

e-1’ 

We take 

u= 1, 1 -x, 
w = cos(nx,)sin(nx,). 

u=(x, + fi)- 
1 - r(xl)’ 

The functionfis chosen such that the given w is the exact solution of (1). We choose a=O, 0.25. 
The mesh is equidistant in the x,-direction, with h ,  = l/n, where n=4, 8, 16, 32. In the 
x,-direction we take n elements as well. 

From (25)-(27) we see that rl = ((xl, x,): x, = r(x,)} and r2 = {(xl, x,): x, = 1) are character- 
istic boundaries. On these boundaries we apply (20). We remark that for CI = 0.25 rl is curved. On 
the inflow boundary we prescribe w. In Table 111 we present the computed values of e. (4) and pzn. 
We see that the asymptotic h dependence of the error has improved considerably. We also see 

Table 111. Computed values of e. (4) and pzn 

a=O tl = 0.25 

Original Characteristic Original Characteristic 
scheme (4) scheme on r scheme (4) scheme on r 

em e2 e* e2 em e2 em e2 

e. (4) 0.19e0 0.98e- 1 0.18e0 0.73e-- 1 0.19e0 0.10e0 0.18e0 0.71e- 1 
Ps 0.8 1.2 1.5 1.5 1 .o 1 -3 1.5 1.6 
PI6 0.9 1.4 1.8 1.8 0-9 1 3 1 -8 1.8 
P 3 2  1 .o 1.5 2.0 1.9 0.9 1.5 1.9 1.9 
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Table IV. Number of iterations in the preconditioned 
CGS method 

Number of Original Characteristic 
unknowns scheme (4) scheme of r 

272 (n = 16) 20 17 
1056 (n=32) 31 32 

little difference between the cases a = 0 and a =0.25. This means that the method seems to work 
well on non-Cartesian grids. 

Because we use a special boundary scheme, the resulting linear system fails to be symmetrical. 
This implies that the iterative solution deserves some attention. We apply the CGS method 
(CGS = conjugate gradients squared) recently developed by Sonneveld.8 Preconditioning is done 
with the aid of an incomplete decomposition with corrections only on the main diagonal. For 
details the reader is referred to References 9-11. We also apply this method to solve the linear 
system resulting from the original scheme (4). In this case the matrix is symmetrical and positive 
definite and the CGS method reduces to a variant of the conjugate gradients method (roughly 
speaking, two CG iterations = one CGS iteration). In Table IV we present the number of iterations 
in the case of test problem (25) with a =0*25 for n =  16, 32. For the termination criterion we have 
used llpreconditioned residualit, < 1.0e-4. 

We conclude that the ‘iterative properties’ of the matrices do not differ significantly. Finally we 
report that in some cases the ordinary incomplete decomposition of the matrices failed to exist. 
The reason is that on the subdiagonals entries occur with both positive and negative values. 

5. CONCLUSION 

It has been shown that the accuracy of the numerical solution of a first-order conservation 
equation by a least-squares finite element method is disappointing, but that the method can be 
improved considerably by applying a special boundary scheme on characteristic boundaries. 
A general formulation of this boundary scheme has been given and it has been shown that this 
new scheme works well, even in the case of curved boundaries and non-Cartesian grids. It has 
been found that an iterative solution of the resulting system can be provided by a preconditioned 
conjugate gradients type of method, the so called CGS method. This study is the first step towards 
the development of an accurate solution method of the steady shallow water equations by means 
of a least-squares approach. Special boundary schemes for systems of equations of the composite 
type are in progress and will be the subject of future publications. 
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